• В вертикальный цилиндрический сосуд диаметром D = 1 м поступает вода из крана расходом Q, которая затем выливается через малое отверстие в дне сосуда при глубине воды в сосуде Н = 1,5 м. Определить: б) время опорожнения сосуда после закрытия крана, если расход притока Q = 1,5 л/с, а диаметр отверстия d = 2,5 см.

Ответы 1

  • Для решения используем формулу истечения жидкости при опорожнении открытого в атмосферу сосуда произвольной формы через донное отверстие.

    t=\frac{2SH}{mSo\sqrt{2gH} } .

    Таким образом, время полного опорожнения резервуара, с постоянным сечением по высоте, при постепенном снижении уровня жидкости в два раза больше времени, которое потребовалось бы в случае истечения того же количества жидкости из отверстия под постоянным максимальным напором H.

    а) Из этой формулы определяем So:

    So=\frac{2SH}{tm\sqrt{2gH} } .

    Для отверстия в тонкой стенке m= 0,62. время t = 19*60 = 1140 c.

    Подставим данные в формулу:

    So=\frac{2\pi *1,5}{4*1140*0,62*\sqrt{2*10*1,5} }= 0,0006086м².

    Отсюда находим диаметр выпускного отверстия:

    d=\sqrt{\frac{4S}{\pi y} } =\sqrt{\frac{4*0,000609}{3,14159} } =0,02784 м или примерно 28 мм.

    Расход Q определяем из той же формулы, подставив туда значение  сечения. Получаем Q = 2,0668 л/с или примерно 2,07 л/с.

    б) Время истечения равно t = 2V/Q, где Q -  максимальный расход жидкости через отверстие, соответствующий начальному уровню  в резервуаре.

    Расход Q = 1,5 л/с   = 0,0015 м³/с.

    t = 2SH/Q = 2*(πD²/4)*H/Q = 2*(3,14159*1²/4)*1,5/0,0015 = 1570,796 с или 26,18 минут.

    Если же подставить значение сечения заданного отверстия в  формулу для определения времени So = πd²/4 = π*0,025²/4 = 0,0004909 м², то получим результат:

    t = 2,3562/(0,62*0,0004909*√(2*10*1,5)) = 1413,478 с или 23,56  минут. Значит, заданный расход в 1,5 л/с не является максимальным расходом жидкости через отверстие, соответствующему начальному уровню  в резервуаре.

     

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years