• Автомобіль масою 2т піднімається на гору,нахил якої становить 0,2.На ділянці шляху 32м швидкість руху автомобіля зросла від 21,6 км/год до 36 км/год.Вважаючи рух автомобіля рівноприскореним визначте коефіцієнт тертя,якщо сила тяги двигуна дорівнює 6304,16Н.А)0,2Б)0,02В)0,05​

Ответы 1

  • Ответ:

    Спочатку знайдемо роботу сили тяги на ділянці шляху:

    $$

    A_{тяги} = F_{тяги} \cdot S = 6304,16 \cdot 32 = 201334,72 \text{ Дж}

    $$

    Другий закон Ньютона для руху з рівномірно зміненою швидкістю дає нам такі відношення між швидкістями і пройденим шляхом:

    $$

    v_1^2 - v_0^2 = 2aS

    $$

    де $v_0$ і $v_1$ - початкова та кінцева швидкість, $a$ - прискорення, $S$ - пройдений шлях.

    Переведемо швидкості до одиниць СІ: $v_0 = 6 м/с$, $v_1 = 10 м/с$, $S = 32 м$.

    Підставляємо і розв'язуємо рівняння відносно прискорення:

    $$

    a = \frac{v_1^2 - v_0^2}{2S} = \frac{(10 \text{ м/с})^2 - (6 \text{ м/с})^2}{2 \cdot 32 \text{ м}} \approx 5 \text{ м/с}^2

    $$

    За другим законом Ньютона для руху зі зміненою швидкістю збільшення кінетичної енергії автомобіля на ділянці шляху $S$ дорівнює роботі сили, яка виконується над автомобілем за рахунок тяги:

    $$

    \Delta E_{к} = A_{тяги}

    $$

    Кінетична енергія автомобіля дорівнює:

    $$

    E_{к} = \frac{mv^2}{2}

    $$

    де $m$ - маса автомобіля, $v$ - його швидкість. Переведемо масу автомобіля до кілограмів: $m=2~\text{т} = 2000~\text{кг}$. Підставляємо вирази для кінетичної енергії і розв'язуємо рівняння відносно $v$:

    $$

    \frac{mv_1^2}{2} - \frac{mv_0^2}{2} = F_{тяги} \cdot S

    $$

    $$

    v_1^2 - v_0^2 = \frac{2F_{тяги}S}{m}

    $$

    $$

    v_1^2 = v_0^2 + 2aS = \frac{2F_{тяги}S}{m} + v_0^2

    $$

    $$

    v_1 = \sqrt{\frac{2F_{тяги}S}{m} + v_0^2} \approx 12,45 \text{ м/с} \approx 44,8 \text{ км/год}

    $$

    Коефіцієнт тертя можна знайти з рівняння, яке відносить силу тертя до сили нормальної реакції нахилу:

    $$

    F_{тр} = \mu F_{N}

    $$

    Для гори з нахилом $\alpha$ сила нормальної реакції дорівнює:

    $$

    F_{N} = mg \cos{\alpha}

    $$

    де $g$ - прискорення вільного падіння ($g\approx9,81$ м/с$^2$). Підставляємо відомі значення і отримуємо:

    $$

    F_{тр} = \mu mg \cos{\alpha}

    $$

    $$

    \mu = \frac{F_{тр}}{mg\cos{\alpha}} = \frac{mg\sin{\alpha}}{mg\cos{\alpha}} = \tan{\alpha}

    $$

    Значення нахилу гори дорівнює 0,2, тобто $\alpha = \arctan{0,2} \approx 11,31^{\circ}$. Отже,

    $$

    \mu = \tan{\alpha} = \tan{11,31^{\circ}} \approx 0,2

    $$

    Відповідь: А)0,2.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years