E_{ind} = -\frac{d\Phi}{dt} Т.е. наша задача сделать максимальной производную потока по времени. d\Phi = BdS_{n}, где S_n = (n,B)S = SBcos(\alpha)n - вектор нормали к рамке, а alpha - угол между этим вектором и вектором индукции магнитного поля. Стоит отметить, что положение оси вращения не существенно, т.к. изменение площади сечения во времени не зависит от этого, а зависит только от угловой скорости. d\Phi = BdS_{n} = BSd(cos(\omega t)) = -BSsin(\omega t)\omega dt. Отсюда E = BSsin(\omega t)\omegaE_{max} = BS\omega. Но!!! Важно! мы это посчитали поток только для одного витака!! поэтому для получения правильного ответа надо полученное ЭДС умножить на число витков. E_{max} = NBS\omega. Чтобы получить омегу, надо данную вам частоту умножить на 2π, предварительно, естественно, частоту привести к Герцам. Вектор Индукции магнитного поля можно получить домножив напряжённость на магнитную проницаемость (положим 1) и магнитную постоянную.E = 2\mu_0\mu HSN\pi\nu У меня получется 45,2 В.