• В правильной треугольной пирамиде DABC боковые ребра DA,DB и DC взаимно перпендикулярны. Вершина D является центром сферы , на поверхности которой лежат точки A,B, и C. Найдите площадь сферы, если ее высота равна 2*sqrt(3) см.

Ответы 1

  • В правильной треугольной пирамиде DABC боковые ребра DA,DB и DC взаимно перпендикулярны. Вершина D является центром сферы , на поверхности которой лежат точки A,B, и C. Найдите площадь сферы, если ее высота равна 2√3 см.-------Понятно,  что 2√3 см - высота пирамиды, т.к. у сферы нет высоты. -------------Боковые ребра пирамиды взаимно перпендикулярны, вершины ∆ АВС лежат на поверхности сферы, D- ее центр, следовательно, все ребра данной пирамиды равны радиусу R сферы, и боковые грани - равнобедренные прямоугольные треугольники/  Боковые ребра пирамиды равны, ⇒ равны  их проекции на плоскость треугольника АВС, ⇒ основание  О высоты DО лежит в центре описанной вокруг ∆ АВС окружности. Пусть стороны основания равны 2а. Высота DH  боковой грани делит ее на два равнобедренных прямоугольных треугольника, является её  медианой и равна половине стороны основания. DH=a ⇒R сферы =AD АD = DС= a√2 как гипотенуза равнобедренного прямоугольного треугольника DHC. AO=2a /√3 как радиус описанной вокруг ∆ АВС окружности. AD²=OD²+AO² (a√2)²=(2√3)²+(2a/√3)² 2a²=12+(4a²/3) 6a²=36+4a² 2a²=36 AD²=36=Sсферы=4πR² S=4*36π=144π см²
    answer img
    • Автор:

      hallie29
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years