Угол между пересекающимися плоскостями АВС и АВD - это двугранный угол. Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. В нашем случае это угол, образованный сечением пирамиды плоскостью CHD, перпендикулярной обеим плоскостям (АВС и АВD). То есть это угол DHC. В прямоугольном треугольнике АВС (основание пирамиды) гипотенуза АВ по Пифагору равна √(АС²+ВС²) =√(7²+24²) =25.Высота СН к гипотенузе равна по свойству этой высоты: СН=АС*ВС/АВ = 7*24/25= 6,72.Тогда тангенс искомого угла равен отношению DC/CH=10/6,72 ≈1,49. То есть искомый угол равен arctg(1,49) ≈ 56°. Или так:Апофема грани ВDА находится по Пифагору из треугольника СDН:DН=√(DС²+СН²) =√(10²+6,72²) ≈12.Тогда косинус искомого угла равен отношению прилежащего катета к гипотенузе: СН/DH = 6,72/12=0,56.Искомый угол равен arccos(0,56) ≈ 56°.