• Докажите, что биссектрисы острых острых углов прямоугольного треугольника пересекаются под углом 45 градусов.

Ответы 1

  • Пусть ABC - прямоугольный треугольник, угол C - прямой. Из вершин A и B проведены биссектрисы пересекающиеся в точке О. Биссектриса из A пересекает сторону BC в точке N, биссектриса из B сторону AC в точке M.Сумма острых углов прямоугольного треугольника равна 90 градусов. Значит, сумма углов, образованных биссектрисами, равна 90:2 = 45 градусов. Тогда в треугольнике AOB угол O равен 180-45 = 135 градусов. Углы BON и AOM равны 180-135 = 45 градусов, как смежные.
    • Автор:

      larryifcs
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years