• Помогите пожалуйста решить задачу.Дан шестиугольник A1;A2,A3;A4,A5;A6,его стороны A1;A2 и A4;A5,A2;A3 и A5;A6,A3;A4 и A6;A1 попарно равны и паралельны,используя центральную симетрию докажите,что диагонали A1;A4,A2;A5 и A3;A6 данного шестиугольника пересекаются в одной точке.

Ответы 1

  • Все полученные треугольники равны (по стороне и двум углам при ней). Это означает, что диагонали в точке их пересечения делятся пополам. Поэтому у фигуры есть центр симметрии. И все диагонали, соединяющие центрально симметричные вершины проходят через центр симметрии и делятся им пополам.
    answer img
    • Автор:

      pirate
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years