• Точка К делит ребро РА правильного тетраэдра РАВ в отношении РК: КА = 2:3. Постройте сечение тетраэдра плоскостью параллельной плоскости (АВС) и проходит через К. Найти площадь сечения, если АВ = 10см.

Ответы 1

  • Все ребра этим сечением разделились в отношении 2:3 Обозначим пересечение плоскости с ребром РВ точкой М.

    Рассмотрим треугольник РАВ и РКМ.

    Основания КМ и АВ в них параллельны.

    Углы при основаниях равны как углы при пересечении параллельных прямых секущей. Угол при вершине Р общий.

    Треугольники РАВ и РКМ - подобны.

     

    Сторона РА относится к РК как (2+3) :2. Коэффициент их подобия равен. 5:2Стороны АВ и КМ относятся как 5:2АВ:КМ=5:2=10:5/2КМ=4 см

    Основание пирамиды и сечение - правильные треугольники. 

    Площадь правильного треугольника находят по формуле:

    S=(a²√3):4

    S сечения =(4²√3):4 =4см²

     

     

     

     

     

     

     

     

    • Автор:

      pickles1
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years