а) Меньшая высота параллелограмма находится из равнобедренного прямоугольного треугольника АВН (острые углы = 45°). По Пифагору 2*ВН²=АВ². Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD: <КАD =<KDA = 45°. Значит АК=КD= а√2. Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3. Sinα = a/а√3 = √3/3.Ответ: искомый угол равен arcsin(√3/3).в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√3).г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То естьSполн=а²(2+√3)+2*AD*BH=а²(2+√3)+4а² = а²(6+√3).