• Стороны углы касаются данной окружности. Какую линию опишет вершина этого угла, если, не изменяя своей величины, угол изменяет положение так, что стороны касаются данной окружности?

Ответы 1

  • Центр окружности лежит на биссектрисе угла. Радиусы окружности, проходящие через точки касания сторон угла с окружностью,  будет перпендикулярны к сторонам угла.  Таким образом, биссектриса, касательные (стороны угла от вершины до точек касания с окружностью) и радиусы образуют два одинаковых прямоугольных треугольника.  И при любом положении угла относительно окружности (при вращении угла вокруг окружности) все размеры этих треугольников будут оставаться неизменными. Следовательно вершина угла опишет окружность , центр которой совпадет с центром  заданной окружности,  и радиусом равным расстоянию от вершины угла до центра окружности.
    • Автор:

      smoochie
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years