Не скажу, что это доказательство в виде теоремы. Скорее объяснение, которое легко запомнить и передать затем своими словами.Окружность называется вписанной в многоугольник, если стороны многоугольника являются для неё касательными.Очевидно, что
не во всякий многоугольник можно вписать окружность. Но всякий многоугольник можно разделить на треугольники. А площадь треугольника можно найти половиной произведения стороны на высоту, проведенную к ней. S=0,5*h*a, где а - сторона треугольника, h- высота к ней.Для многоугольника его площадь - сумма площадей всех треугольников, на которые его можно разделить:S=S₁+S₂+ S₃ и т.д
Высоты треугольников, на которые можно разделить описанный многоугольник,
равны радиусу вписанной окружности, так как радиус перпендикулярен касательной в точке касания. .Тогда S=0,5*a₁*r+0,5*a₂*r+0,5*a₃* r+0,5*a₄*r и т.д.Вынесем общий множитель 0,5r за скобки
⇒ S=r*0,5*(a₁+a
₂+a
₃+a
₄+ an)Ясно, что 0,5*(a₁+a₂+a₃+a₄+an) - это полупериметр многоугольника Теперь можно площадь многоугольника, в который вписана окружность, записать как
S=r*p, где r- радиус вписанной в многоугольник окружности, р- полупериметр этого многоугольника. Что и требовалось доказать. -----bzs@