• Высоты, проведенные из вершин А, В и С треугольника АВС, равны 20, 15 и 12 соответственно.
    а) Докажите, что треугольник АВС прямоугольный.
    б) Найдите длину биссектрисы треугольника, проведенной из вершины С.

Ответы 1

  • В прямоугольном треугольнике две высоты совпадают с катетами, это 20 и 15. Тогда гипотенуза c=(20^2+15^2)^(1/2)=25, высота, опущенная на с Hc=ab/c=12 данная в условии. Искомая биссектриса bc , проведенная из вершины прямого угла C выражается известной формулой bс=2b*a*cos(π/4)/(a+b)=2*15*20/1,41*(15+20).=12,15
    • Автор:

      chiefoy7f
    • 1 год назад
    • 17
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years