• Две касающиеся внешним образом в точке K окружности, радиусы которых равны 39 и 42, касаются сторон угла с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.

Ответы 1

  • Окружность с центром О₁ касается стороны  угла АВ в точке Е,  радиус окружности О₁Е=О₁К=39.Окружность с центром О₂ касается стороны  угла АВ в точке Д,  радиус окружности О₂Д=О₂К=42.Т.к. касательная перпендикулярна к радиусу окружности, проведённому в точку касания, то О₁Е ⊥АЕ, О₂Д⊥АД, О₁К⊥ВС и О₂К⊥ВС.Рассмотрим ΔО₁ЕВ иΔО₁КВ они равны по трем сторонам (О₁Е=О₁К как радиусы, ЕВ=КВ как отрезки касательных из одной точки, О₁В - общая). Значит <ЕВО₁=<КВО₁, тогда О₁В - биссектриса <ЕВК.Аналогично доказывается, что О₂В - биссектриса <ДВК<ЕВК.и <ДВК - смежные, а биссектрисы смежных углов, пересекаются под прямым углом, значит <О₁ВО₂=90°.В прямоугольном ΔО₁ВО₂ ВК является высотой, опущенной из прямого угла на гипотенузу: ВК=√О₁К*О₂К=√39*42=√1638=3√182ΔАВС - равнобедренный (АВ=АС):  АК является высотой, медианой и биссектрисой. Основание ВС=2ВК=6√182Получается, что окружность с центром О₁ вписана в ΔАВС.Формула радиуса вписанной окружности в равнобедренный треугольникО₁К=ВС/2*√(2АВ-ВС)/(2АВ+ВС)Подставляем данные:39=6√182/2 * √(2АВ-6√182)/(2АВ+6√182)(2АВ-6√182)/(2АВ+6√182)=(13/√182)²182(2АВ-6√182)=169(2АВ+6√182)26АВ=2106√182АВ=81√182АК=√(АВ²-ВК²)=√((81√182)²-(3√182)²)=√78*84*182=1092Площадь ΔАВС:Sавс=АК*ВС/2=АК*ВК=1092*3√182=3276√182Радиус описанной окружностиR=АВ²*ВС/4Sавс=(81√182)²*6√182 / 4*3276√182=2187/4=546,75Ответ: 546,75
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years