а) Проведем общую касательную РМ. АР=РК как касательные к окружности из одной точки. Значит <PAK=<PKA (треугольник АРК - равнобедренный).<ADK=<PAK (так как <ADK вписанный опирающийся на дугу АК, а <PAK -угол между касательной AP и хордой, стягивающей дугу АК).<PKA=<MKC как вертикальные, <MKC=<CBK (так как <CBK вписанный опирающийся на дугу KC, а <MKC -угол между касательной MK и хордой, стягивающей дугу КC).Следовательно, <ADK=<CBK, а это внутренние накрест лежащие углы при прямых AD и ВС и секущей DB. Значит AD параллельна СВ, что и требовалось доказать.б) Соединим центры окружностей с точкой Р. Имеем прямоугольный треугольник ОРО1, в котором гипотенуза ОО1 делится высотой РК из прямого угла на две части: R и r или 4 и 1. По известной формуле высота РК=√4*1=2. Кроме того, высота, опущенная на гипотенузу, связана с катетами прямоугольного треугольника соотношением:1/a²+1/b²=1/f², где а и b - катеты, а f - высота. Тогда в прямоугольном треугольнике ОАР с катетами ОА=4 и АР=2, квадрат высоты к гипотенузе ОР равен 16/5, а высота = (4√5)/5. Но отрезок АК равен этой удвоенной высоте, то есть (8√5)/5. точно так же найдем ВК из прямоугольного треугольника РВО1 с катетами 2 и 1. ВК=(4√5)/5.Итак, мы имеем треугольник АКВ со сторонами АК=(8√5)/5, КВ=(4√5)/5 и АВ=4. По Герону находим площадь этого треугольника. Полупериметр р=(12√5+20)/10, (р-а)=(20-4√5)/10, (р-b)=(20+4√5)/10 и (р-с)=(12√5-20)/10. Отсюда Sakb=3,2ед².Но выше мы доказали, что ADCB - трапеция с параллельными основаниями AD и ВC, в которой диагонали DB и AC делят ее на 4 треугольника, два из которых подобны (DAK и ВКС), а два других - равновелики (АКВ и DКС). Площадь треугольника АКВ мы только что нашли, значит площадь треугольника DKC=3,2.Ответ: Sdkc=3,2.