• Через середину высоты равнобедренного треугольника проведены две прямые, соединяющие её с вершинами основания. Какую часть площади треугольника составляют каждая из 6-ти частей, на которые эти две прямые разделяют треугольники?

Ответы 1

  • Дано:  ΔABC : AB=BC; BH⊥AC; BO=OH

    Найти:  S_{AOH}; S_{COH}; S_{AOK}; S_{CON}; S_{BOK}; S_{BON}

    S_{ABC}=\dfrac{AC\cdot BH}{2}

    ΔABC - равнобедренный, высота BH является медианой и биссектрисой

    ⇒   AH = HC  ⇒   ΔABH = ΔCBH - по двум катетам. Дальше можно рассматривать только одну половинку равнобедренного треугольника.

    S_{AOH} = \dfrac{AH\cdot OH}{2}=\dfrac{\frac{AC}{2}\cdot \frac{BH}{2}}{2}=\dfrac{1}{4}\cdot \dfrac{AC\cdot BH}{2}=\dfrac{1}{4}\cdot S_{ABC}\\ \\ \boxed{\boldsymbol{S_{AOH} =S_{COH} =\dfrac{1}{4}\cdot S_{ABC}}}

    S_{AOB}=\dfrac{1}{2}\cdot S_{ABC}-S_{AOH}=\\ \\~~~~~~~~~= \dfrac{1}{2}\cdot S_{ABC}-\dfrac{1}{4}\cdot S_{ABC}=\dfrac{1}{4}\cdot S_{ABC}

    У треугольников  AOK и BOK  одинаковая высота  OM.  Поэтому их площади будут пропорциональны основаниям  AK и KB. Чтобы найти отношение АК:КВ, достроим треугольник ABH до прямоугольника ALBH. LB=AH;  AL=BH;   LB║AH;  AL║BH

    ∠AKL=∠OKB - вертикальные углы.

    ∠LAK=∠OBK - накрест лежащие углы при AL║BH и секущей АВ.  ⇒  

    ΔAKL ~ ΔBKO  подобны по двум углам:

    \dfrac{AK}{KB}=\dfrac{AL}{BO}=\dfrac{2BO}{BO}=2~~~\Rightarrow~~~\boldsymbol{AK=2KB}~~~\Rightarrow\\ \\ \\S_{AOK}=\dfrac{AK\cdot OM}{2}=\dfrac{2KB\cdot OM}{2}=2\cdot S_{BOK} \\ \\ S_{AOB}=\dfrac{1}{4}\cdot S_{ABC}\\ \\ S_{AOB}=S_{AOK}+S_{BOK}=\dfrac{1}{4}\cdot S_{ABC}\\ \\ 2\cdot S_{BOK}+S_{BOK}=\dfrac{1}{4}\cdot S_{ABC}\\ \\ 3\cdot S_{BOK}=\dfrac{1}{4}\cdot S_{ABC}~~~\Rightarrow~~~S_{BOK}=\dfrac{1}{12}\cdot S_{ABC}\\ \\ \boxed{\boldsymbol{S_{BOK}=S_{BON}=\dfrac{1}{12}\cdot S_{ABC}}}

    S_{AOK}=2\cdot S_{BOK}=2\cdot \dfrac{1}{12}\cdot S_{ABC}=\dfrac{1}{6}\cdot S_{ABC}\\ \\ \\ \boxed{\boldsymbol{S_{AOK}=S_{CON}=\dfrac{1}{6}\cdot S_{ABC}}}

    Ответ: площади двух треугольников при основании равны и составляют 1/4 часть площади равнобедренного треугольника;

    площади двух треугольников при вершине равны и составляют 1/12 часть площади равнобедренного треугольника;

    площади двух треугольников при боковых сторонах равны и  составляют 1/6 часть площади равнобедренного треугольника.

    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years