• Высота остроугольного треугольника равна 4. Она делит основание на две части, относящиеся как 1:8. Найти длинну отрезка, паралельного высоте и делящего треугольник на две равновеликие части.

Ответы 1

  • Оказалось непросто, даже почти забанили за самоуверенность. Но решение простое. Итак: Треугольник ABC. Высота BD. Обозначим длину искомого отрезка - х (EF). BD=4, AD=1, DC=8, Задача сводится к тому, чтобы прировнять площади двух получившихся фигур, S1 (маленький треугольник CEF) и S2 (сложная фигура, состоящая из треугольника ABD и прямоугольной трапеции BEFD. Отношение сторон треугольника ECF равно отношению в BCD. Следовательно если EF=x, то CF=2x. Находим площадь S1=(x*2x)/2=x²; То есть S2=S1, но вместе с тем S2+S1=Sобщ. Sобщ=(4*8)/2+(4*1)/2=18; Sобщ=2S1=2x²=18; x²=9; x=3. Ответ: длина отрезка = 3.
    • Автор:

      capone
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years