Катеты прямоугольного треугольника равны 30 см и 40 см. Найдите синус, косинус, тангенс, котангенс угла между медианой и высотой, проведенных к гипотенузе. ---------Пусть дан треугольник АВС. ВС=30 см, АС=40 см. Из отношения катетов 3:4 следует, что этот треугольник - египетский, и АМ=50 см ( по т. Пифагора, естественно, также АВ=50 см)Длина медианы прямоугольного треугольника из прямого угла к гипотенузе равна ее половине. ⇒ СМ=ВМ=АМ=25 см ∆ АМС - равнобедренный.
Высота прямоугольного треугольника делит его на подобные треугольники. ∆ ВНС~∆ ВСН, коэффициент подобия k= ВС:АВ=0,6 ⇒ ВН=СН*0,6=18 смСН=АС*0,6=24 смМН=ВМ-ВН=25-18=7 смsin ∠HCM=MH:CM=7/25cos ∠HCM=CH:CM=24/25tg ∠HCM=HM:HC=7/24ctg ∠HCM=HC:HM=24/7