• Длины сторон треугольника ABC: BC=15; AB=13; AC=4. Через AC проведена плоскость альфа, которая составляет с плоскостью ABC угол равный 30 градусов. Найти расстояние от вершины B до плоскости альфа.

Ответы 1

  • из вершины В опустить перпендикуляры на плоскость альфа (пересечет в точке Д) и на сторону АС (точка Е). Получим прямоугольный треугольник ВДЕ с острым углом ВЕД=30град и гипотенузой ВЕ. ВЕ- высота к АС в треугольнике АВС. Ее можно найти из формулы площади h=2S/AC   S=V(h*(p-a)*(p-b)*(p-c))    p=1/2 *(a+b+c)=1/2 *(15+13+4)=16

    S=V(16* (16-15)*(16-13)*(16-4))=V(16*1*3*12)=24

    h=2*24/4=12

    ВД-катет. лежащий напротив угла 30град и равен половине гипотенузы 1/2 *12=6

     

    Расстояние от вершины В до плоскости альфа 6см 

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years