• в треугольнике авс из вершины в проведена высота вд и биссектриса вл найдите площадь треугольника влд если известны длины сторон треугольника авс ав=6,5 вс=7,5 ас=7

Ответы 1

  • Здесь есть одна хитрость, позволяющая не проводить длинные, хотя и несложные вычисления. Для еще большей "прозрачности" решения я увеличу размеры сторон в 2 раза (площадь всего треугольника и треугольника вдл увеличатся при этом в 4 раза).

    Итак, треугольник имеет стороны 13, 14, 15.  

    Такой треугольник можно "составить" из двух прямоугольных треугольников с целыми длинами сторон (то есть из двух Пифагоровых треугольников). Надо взять треугольники со сторонами 5, 12, 13 и 9, 12, 15 и совместить одинаковые катеты 12 так, чтобы катеты 5 и 9 вместе образовывали сторону 14. 

    ( Еще раз - получается, что высота вд делит треугольник на два Пифагоровых, и, следовательно, высота к стороне 14 равна 12. Площадь всего треугольника равна 84. Конечно, все это можно сосчитать, составляя уравнения для длин сторон с использованием теоремы Пифагора. Площадь всего треугольника можно сосчитать по формуле Герона. Но так быстрее и понятнее :))

    У треугольника вдл та же высота 12, и надо найти дл. 

    По свойству биссектрисы

    сл = 14*15/(13+15) = 15/2;

    сд = 9 (смотри самое начало :))

    Отсюда дл = 1,5.

    Sвдл = 12*1,5/2 = 9.

    А если вспомнить, в самом начале все размеры были увеличены в 2 раза (а площади - в 4) то ответ 9/4;

    • Автор:

      annabel
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years