• Дан треугольник ABC. Точка M принадлежит AB. BM:MA=4:1. Точка N принадлежит BC. BN:NC=4:1. Доказать, что MN параллельна AC.

Ответы 1

  • BM/MA =4/1 ⇔MA/BM =1/4⇒1+MA/BM =1+1/4⇒BA / BM =5/4 .BN/NC =4/1 ⇔NC/BN =1/4⇒1+NC/BN =1+1/4⇒ BC / BN =5/4 .BA / BM =BC / BN.  ∠B _общий.  Значит ΔBMN  подобен  Δ BAC (2-ой признак). ∠BMN = ∠BAC,  но они соответствующие   углы  ( MN  и AC  прямые , BA секущая ) ⇒∠BMN = ∠ BAC  ⇒ MN ||  AC .
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years