• В тетраэдре DABC точка М — середина AD, Р принадлежит DC и DP:PC =1:2. Постройте сечение тетраэдра плоскостью, проходящей через точки М и Р и параллельной ВС. Найдите площадь сечения, если все ребра тетраэдра равны 6.

Ответы 1

  • В сечении имеем равнобедренный треугольник МРК. МК = МР.Сторона РК (по свойству подобных треугольников) равна 1/3 части ВС: РК = 6/3 = 2.Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДК:(по условию МД = 3, а КД = РД = 6/3 = 2)MK= \sqrt{3^2+2^2-2*3*2*cos60}= \sqrt{9+4-6}  = \sqrt{7} =2.64575.
Теперь все стороны известны и по Герону находим площадь:       a          b          c                  p               2p                S 2.64575     2    2.64575    3.64575  7.2915026   2.4494897 cos A = 0.3779645    cos B = 0.7142857    cos С = 0.377964473 Аrad = 1.1831996    Brad = 0.7751934      Сrad = 1.18319964 Аgr = 67.792346      Bgr = 44.415309         Сgr = 67.7923457
    • Автор:

      skyler16
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years