• Из точки А к данной плоскости альфа проведены перпендикуляр АА1 и две наклонные АВ и АВ.
    СА1=4, уголАВА=30 градусам, угол АСА1=60 градусов, а угол между наклонными 90 градусов.
    Найти расстояние между основаниями наклонных.

Ответы 1

  • Условие должно быть таким: Из точки А к данной плоскости альфа проведены перпендикуляр АА1 и две наклонные АВ и АС. СА1=4, угол АВА1=30°, угол АСА1=60°, а угол между наклонными 90°.Найти расстояние между основаниями наклонных.Решение.Из прямоугольного треугольника АСА1:tgC=AA1/A1C (отношение противолежащего катета к прилежащему). Тогда АА1=А1С*tg60° = 4√3. АС=√(АА1²+А1С²)=√(48+16)=8. (Пифагор)Из прямоугольного треугольника АВА1:АВ=2*АА1 = 8√3 (АА1 - катет против угла 30° и равен половине гипотенузы АВ).Из прямоугольного треугольника АВС (<ВАС=90° - дано): ВС=√(АВ²+АС²)=√(64+192)=16.Ответ: расстояние ВС между основаниями наклонных равно 16.
    answer img
    • Автор:

      vincent49
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years