• помогите решить пожалуйста треугольник АВС,в котором угол А=45,АВ=АС(2 под корнем),вписан в окружность радиуса 4,а хорда этой окружности,проходящая через вершину В и центр вписанной в этот треугольник окружности,пересекает сторону АС в точке М.Найдите площадь треугольника АМВ

Ответы 1

  • Эта задача проще, чем кажется.

    Дело в том, что вписаный угол САВ = 45 градусов, и АС = АВ*cos(45), поэтому ВС перпендикулярно АС, проще говоря, АСВ - прямоугольнй равнобедренный треугольник, и АВ - диаметр окружности, равный 8. Площадь АВС очевидно равна 8*4/2 = 16.

    ВМ - биссектриса угла В, и делит АС в отношении СМ/МА = СВ/ВА = √2/2;

    Это означает, что АМ = 8*(√2 - 1), 

    А площадь АМВ равна АМ*ВС/2 = 8*(√2 - 1)*(4*√2)/2 = 16*(√2 - 1).

    Это примерно 0,41 от площади АВС. 

    • Автор:

      heidi51
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years