• Дано: ABCD - трапеция, диагонали которой пересекаются в точке О AO : CO = 7:3; BD = 40 см Доказать: BO * AO = CO * DO Найти: BO и DO.

Ответы 2

  • Решение в файлике внизу!!!

    answer img
    • Автор:

      bellaovsq
    • 6 лет назад
    • 0
  • Треугольники АDO и BCO подобны, потому что у них равны все углы. Ну, углы ВОС и AOD вертикальные, а углы ОВС и ODA - внутренние накрест лежащие при параллельных основаниях и секущей ВС. 

    Поэтому ВО/ОD = CO/OA;

    Отсюда BO * AO = CO * DO;

    Далее, ВО/ОD = 3/7, что означает, что ВО это 3 части :)))) а OD - это 7 частей, то есть BD это 10 частей, и одна часть это 4, откуда BO = 12, OD = 28;

    answer img
    • Автор:

      sadiehela
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years