• в ромбе mpkt на сторонах отмечены четыре точки делящие стороны в отношении 2:3 считая от вершин m и K докажите что отмеченные точки являются вершинами прямоугольника

Ответы 1

  • в ромбе стороны равны,  диагонали пересекаются по прямым углом. Проведем через  отмеченные точки отрезки. Рассматриваем треугольники, образованные диагоналями и отрезками.

    1 - меньшая диагональ: имеем два больших треугольника с основанием диагональю, а в них два меньших с основаниями - отрезками. Треугольники подобны по двум сторонам и углу между ними с коэффициентом подобия 2:5 (3+2=5 - сторона ромба из 5 частей).  Из подобия вытекает, что отрезки параллельны диагонали ромба параллельны между собой.  Большая диагональ перпендикулярна меньшей, а значит и отрезкам параллльеным этой диагонали.

    2- большая диагональ - аналогично, коэффициент подобия 3:5.  Отрезки параллельны меньшей диагонали и перпендикулярны  большей. 

    Отсюда имеем прямоугольник

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years