• Центр окружности, описанной около равнобедренного треугольника, делит медиану, проведенную к основанию, в отношении 25:7. Боковая сторона треугольника равна 40 см. Найдите радиус окружности, вписанной в треугольник.

Ответы 1

  • Ответ: r=12 см

    Объяснение: Обозначим данный треугольник АВС, ВМ - медиана, О - центр описанной окружности, ВК - диаметр.

     Медиана равнобедренного треугольника к основанию  является  его высотой  и биссектрисой.⇒  ВМ⊥АС.

     Примем коэффициент отношения отрезков медианы равным а. Тогда ВО=25а, ОМ=.

    КАВ – вписанный, ВК - диаметр, ⇒ ∆ ВАК прямоугольный, АМ - его высота. Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое (среднее пропорциональное) между проекциями катетов на гипотенузу.⇒ АМ²=КМ•ВМ.  

      ОК=ОВ=25а - радиусы.  ⇒ ВМ=ВО+ОМ=25а+7а=32а;    МК= ОК-ОМ=25а-7а=18а. ⇒ АМ²=32а•18а=576а², откуда AM=√576a²=24a.

       Из прямоугольного ∆ АВМ по т.Пифагора АМ²+ВМ²=АВ², т.е. 24а²+32а*=1600, откуда а=1 см.

      Формула радиуса вписанной в треугольник окружности r=S/p, где Ѕ - площадь треугольника. р - его полупериметр. r=0,5•ВМ•АС:0,5(АВ+ВС+АС)=12 см

    answer img
    • Автор:

      nash
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years