• ПОМОГИТЕ СРОЧНО !!!
    2. Точка P делит сторону AC треугольника ABC в отношении 2:3 считая от вершины A. Биссектриса AK делит отрезок BP пополам. На стороне BC отмечена точка O так ,что PO || AK. Найдите площадь четырехугольника ABOP ,если площадь треугольника ABC равна 35 и AB:AC=2:5.

Ответы 1

  • В треугольнике АВС отношение АР:РС=2:3. Высота у треугольников АВР и ВРС общая, значит, точка Р делит площадь треугольника АВС на два в отношении 2:3 Площадь одной части этого отношения равна 35:(2+3)=7, и площадь ∆ АВР=2*7=14 Пусть в треугольнике АВР точка пересечения биссектрисы  АК и отрезка ВР будет Н. Так как ВН=НР, АН - медиана и делит площадь ∆АВР пополам (свойство). Тогда площадь ∆ АВН=14:2=7 Биссектриса угла треугольника делит противоположную углу сторону в отношении прилежащих сторон (свойство). ⇒ Так как АВ:АС=2:5, то  ВК:КС= 2:5 Высота из А в треугольниках АВК и АКС  одна и та же, следовательно, площади треугольников АВК и АКС относятся как 2:5. Отсюда площадь ∆ АВК=35:(2+5)*2=10 Т.к. площадь АВН=7, то Ѕ ∆ ВНК=Ѕ ∆ АВК-Ѕ ∆ АВН=10-7=3 В треугольнике ВРО отрезок НК || РО, и ВН=НР, поэтому НК его средняя линия. Треугольники ВНК иВРО подобны,  k=1/2. Отношение площадей  подобных треугольников равно квадрату их коэффициента подобия.⇒  Ѕ∆ ВНК:Ѕ ∆ ВРО=k²=1/4 Тогда площадь ∆ ВОР=4 площади ВНК и равна 3*4=12 Площадь  четырехугольника АВОР равна  Ѕ  ∆ АВР+Ѕ ∆ВРО=14+12=26 (ед. площади)
    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years