• В шаре с центром O радиуса R проведены радиусы OA и OB, угол между которыми 60 градусов. Найдите площадь сечения, проходящего через точки A и В под углом
    30 градусов к плоскости АОВ. Полное решение нужно.

Ответы 1

  • вычислим высоту равностороннего треугольника АОВ ОН =R*sqrt (3)/2, проведем от О к сечению высоту ОМ и вычислим ее ОМ = ОН×sin30=R*sqrt (3)÷4; Поскольку сечение это окружность, вычислим радиус этой окружности по теореме Пифагора как катет к прямоугольному треугольнику с одним из катетов ОМ и гипотенузой равной радиусу R и равняется R1= sqrt (R^2-R^2*3/16)=R*sqrt (13)/4.Площадь равна pi*R1^2=pi*R^2*13/16
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years