• Две окружности имеют общий центр. Докажите, что хорды большей окружности, касающиеся меньшей окружности, равны между собой.

Ответы 2

  • хорды касаются меньшей, т.е. они перпедикулярны ее радиусу. Рассматриваем два равнобедренных треугольника, где боковые стороны - радиусы большей окружности, а основания - ее хорды. Высоты к основанию в этих треугольниках равны, значит равны и их основания (высота - медиана и бисектрисса): зз прямоугольных треугольников с равными и гипотенузами и общим катетом вторые катеты равны, они и есть половины оснований 

    • Автор:

      damonps3u
    • 5 лет назад
    • 0
  • Радиус большой окружности = X+Y

    Радиус маленькой = Х

    AB и CD- хорды, 

     

     

    Х перпенд. к хордам т.к касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.(св-во касательной)=>

    Х- расстояние от центра окружности до хорды.

     Многим в школах обьясняют что хорды ровны, если расстояние от центра окружности к хордам ровны, а у нас расстояние равно радиусу маленькой окружности=> хорды ровны)

    answer img
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years