Центр окружности, описанной вокруг прямоугольного треугольника, находится на середине его гипотенузы (свойство). Поэтому надо при помощи циркуля и линейки разделить гипотенузу данного нам треугольника пополам и радиусом, равным половине гипотенузы, провести окружность.Итак, Радиусом, большим половины гипотенузы, проводим окружности (дуги окружностей) с центрами в вершинах В и С. Соединяем точки их пересечения M и N. На пересечении гипотенузы ВС и прямой MN получаем центр О искомой окружности. Радиусом, равным ОВ (ОС), проводим искомую окружность.