• нА ОКРУЖНОСТИ ОПИСАННОЙ ОКОЛО РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА авс ВЗЯТА ТОЧКА м, ОТЛИЧНАЯ ОТ А,В,С.Доказать что один из отрезков АМ, АВ,АС равен сумме двух других

Ответы 3

  • Блин, не на 60°, а на 120° надо повернуть :))) вот чего не надо делать - это ночью писать
    • Автор:

      chan
    • 5 лет назад
    • 0
  • Есть тут адекватный модератор, чтобы открыть мне доступ к ответу - мне надо там одно число поправить?
    • Автор:

      big nasty
    • 5 лет назад
    • 0
  • Вот решение, попробуйте разобраться. :)Если повернуть фигуру вместе с точкой M на 60° вокруг центра окружности, то точка M перейдет в точку N, лежащую уже на дуге BC (треугольник при этом перейдет сам в себя). Ясно, что NB = MA, NC = MB. Поэтому MBNC - равнобедренная трапеция (то есть MC II BN); (внимание, это предложение и есть, собственно, решение задачи)Поскольку угол этой трапеции при основании MC равен 60° независимо от положения точки M (это вписанный угол, опирающийся на дугу в 120°), проекции равных боковых сторон MB и NC на основание MC равны их половинам, откуда и следует, что основание MC равно сумме второго основания NB = MA и боковой стороны NC = MB; то есть MC = MA + MB
    • Автор:

      freddy21
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years