Цитата: "Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники."Диагональ основания призмы ВD параллельна диагонали сечения ЕЕ1 (доказывать не надо). Тогда ВЕ=ОО1, а искомое расстояние от В до плоскости АЕС1 равно перпендикуляру ОН, основание которого Н лежит на диагонали призмы АС1. В треугольнике ОНО1 угол <НОО1 равен углу треугольника АСС1 <CAC1, как углы с соответственно перпендикулярными сторонами. Cos(<CAC1)=АС/АС1. АС - диагональ основания призмы (квадрата) и равна 4√2. АС1 - диагональ призмы (и диагональ сечения) и равна √(АС²+СС1²)=√(32+4)=6. Тогда Cos(<СAC1)=4√2/6=2√2/3.В треугольнике ОНО1: ОН=ОО1*Cos(<HOO1)=1*2√2/3=2√2/3.Ответ: искомое расстояние равно 2√2/3.Координатный метод: поместим начало координат в точку В. Пусть ВС- ось X, BB1- ось Y, BA - ось Z.Мы имеем:Точки А(0;0;4)В(0;0;0), Е(0;1;0), C1(4;2;0).Теперь можем написать уравнения плоскости, проходящей через 3 точки и найти расстояние от точки В до плоскости АЕС1.Для составления уравнения плоскости АЕС1 используем формулу:|x - xА xЕ - xА xС1 - xА||y - yА yЕ - yА yС1 - yА| = 0.|z - zА zЕ - zА zС1 - zА|Подставим данные трех наших точек А,Е и С1:|х-0 0 4 | |y-0 1 2 | = 0.|z-4 -4 -4 |Раскрываем определитель по первому столбцу, находим уравнение плоскости: | 1 2 | | 0 4 | |0 4| х*|-4 -4 | - y*|-4 -4 | + (z-4)*|1 2| =0.Или: x(-4+8)- y(0+16) +(z-4)(0-4)=0 или 4x-16y-4z+16=0 или x-4y-z+4=0.Итак, имеем плоскость в виде Ax+By+Cz+D=0:x-4y-z+0=0, где А=1, В=-4, С=-1, D=4 и точку В(0;0;0). Надо найти расстояние от этой точки до плоскости.Если задано уравнение плоскости Ax + By + Cz + D = 0, то расстояние от точки В(Вx, Вy, Вz) до плоскости можно найти, используя следующую формулу:d=|A*Bx+B*By+C*Bz+D|/√(A²+B²+C²); В нашем случае:d=|4|/√(1+16+1)=4/(3√2)=2√2/3. Ответ: расстояние от В до плоскости АЕС1 равно 2√2/3.