• Периметр четырёхугольника описанного около окружности равен 56 две его стороны равны 6 и 14. Найдите большую из оставшихся сторон.

Ответы 1

  • В описанном около окружности четырехугольнике сумма длин его противоположных сторон равна.

     

    Проверим, являются ли стороны с длинами 6 и 14 противоположными. Для этого разделим периметр на их сумму, и если не получим два, то эти стороны не являются противоположными.

     

    56/(6+14) > 2

     

    Тогда, назовем сторону, которая протиположна стороне равной 6, x, сторону, протиполложную стороне равной 14, y.

     

    6 + x = 14 + y

     

    56/2 = 28 =  14 + y, y = 14

     

    6 + x = 56/2 = 28

     

    x = 22

     

    Наибольшая сторона равна 22.

     

     

    • Автор:

      abagail
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years