Предмет:
ГеометрияАвтор:
kimora0bfgПлощадь треугольника АВД равна сумме площадей треугольников АМД и АВМ и равна 6+3=9. Высота треугольника АВД равна высоте трапеции АВСД. Введём обозначения: h - высота треугольника АМД, H - высота треугольника АВД, a - нижнее основание трапеции, в - верхнее основание. Отношение высот определим из их площадей: (1/2)a*h = 6, (1/2)a*H = 9. Отсюда h/Н = 6/9 = 2/3. Теперь рассмотрим треугольник ВМС. Он подобен треугольнику АМД. Высота его равна Н - h, а площадь пропорциональна квадрату сходственных сторон. Произведение a*h = 6*2 = 12, a*H = 9*2 = 18. Если принять целочисленные значения этих величин, то такое соотношение возможно при значениях а = 3, h = 4, Н = 6. Тогда Н - h = 6 - 4 = 2. Площадь треугольника ВМС равна:
(1/2)в*(Н - h) = (1/2)в*2 = в. Отношение площадей треугольников ВМС и АМД равно
(Н – h)²/h² = 2²/ 4² = 4/16 = 1/4.
То есть S(ВМC) = (1/4)*S(АМД),
(1/2)в*(Н - h) = (1/4)*6.
(1/2)в*2 = 6/4,
в = 6/4 = 3/2.
Перенесём сторону ВС к нижнему основанию в точку Д.
Получим треугольник АВД₁, равновеликий по площади трапеции АВСД.
S(АВСД) = S(АВД₁) = (1/2)*H*(a+в) = (1/2)*6*(3+(3/2)) = 27/2 = 13,5 кв.ед.
Автор:
brianfosterДобавить свой ответ
Предмет:
ЛитератураАвтор:
fletcherОтветов:
Смотреть
Предмет:
ИнформатикаАвтор:
elsaknoxОтветов:
Смотреть
Предмет:
Окружающий мирАвтор:
edseld5d7Ответов:
Смотреть