• Прямые a и b параллельны. Докажите, что середины всех отрезков MN, где M Є a, N Є b, лежат на прямой, параллельной прямым a и b и равноудаленной от этих прямых.

Ответы 1

  • Может быть три варианта расположения прямых MN, которые можно свести к представленному рисунку. Для доказательства перенесем параллельно прямые МN так, чтобы один из концов (М или N) находился в одной точке. В любом случае получим треугольник M1NМ2, в котором прямая ЕF, соединяющая середины всех отрезков МN, будет являться средней линией этого треугольника, и, следовательно, будет параллельна одной из прямых (a или b) как основанию этого треугольника. А так как в треугольнике высота также делится средней линией пополам, то значит и середины отрезков МN равноудалены от прямых a и b.Что и требовалось доказать.
    answer img
    • Автор:

      sanzbvgy
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years