• Сторона ромба равна 10√3, а острый угол ромба равен 60. Найдите радиус вписанной окружности ромба. (Ответ должен быть 7,5)

Ответы 1

  • Тут совсем просто)

    Если острый угол ромба равен 60 градусов, то половина этого ромба - равносторонний треугольник, и малая диагональ ромба, равна его стороне, т.е. 10√3, а ее половина = 5√3.

    Большая диагональ ромба навна двум высотам этого треугольника, т.е. 15 см.

    Радиус вписанной в ромб окружности равен высоте, выведенной из прямого угла прямоугольного треугольника, представляющего собой четверть ромба.

    Катеты этого треугольника равны 5√3 (половина меньшей диагонали) и 15 (половина большей диагонали), а гипотенуза 10√3 (сторона ромба).

     

    Тогда высота, выведенная из прямого угла этого треугольника (а значит, и искомый радиус) равна (15 * 5√3)/10√3 = 7,5.

     

    Остались вопросы - задавайте в личку!)

     

     

    • Автор:

      kaylahgay
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years