центр вписанной в трапецию окружности лежит в точке пересечения её биссектрис.биссектрисы смежных углов трапеции пересекаются под прямым углом,поэтому треугольник с вершиной в центре окружности и основанием - боковой наклонной стороной трапеции - прямоугольный с прямым углом при вершине, которая является центром окружности.радиус перпендикулярен касательной => искомая величина h - это длина перпендикуляра опущенного из прямого угла =>h^2 = ab = 25 * 36h = 5 * 6 = 30Ответ: 30.