• Помогите плз!Только с подробным решением.
    Радиус окружности с центром в точке O равен 65 см, длина хорды AB равна 126 см. Найдите расстояние от хорды AB до параллельной ей касательной k

Ответы 3

  • найти надо было не это, а отрезок между касательной и хордой
    • Автор:

      gideon
    • 5 лет назад
    • 0
  • Извини, надо читать не АО, а ОD. Искомый отрезок есть разница ОК и ОD, где ОК - радиус.
  • Обозначим точку касания как К. Соединим К с центром О. ОК - радиус окружности и перпендикулярен касательной по определению. Более того, он проходит через середину хорды АВ и перпендикулярен ей. Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам. Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD.Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63. Далее по теореме Пифагора находим второй катет - АО.И находим расстояние. Это будет ОК-АО.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years