В окружность вписана трапеция острый угол между диагоналями которой равен 38. Найти углы трапеции если большее основание трапеции проходит через центр окружности.
Обозначим трапецию ABCD. Точку пересечения диагоналей обозначим О. <ABO=38°<ACD=<ABD=90°, так как это вписанные углы, опирающиеся на диаметр. <AOD=180°-38°=142°ΔABO и ΔOCD-прямоугольные⇒<BAO=<CDO=90°-38°=52°ΔΔABD-равнобедренный⇒<OAD=<ADO=(180°-142°)/2=19°<BAD+<ADC=<BAO+<OAD=52°+19°=71°<ABC=<BCD=180°-71°=109°