Сечение шара(сферы) плоскостью - всегда является кругом. Центр этого круга - это основание перпендикуляра(CH), опущенного из центра(C) шара на секущую плоскость. Площадь круга равна pi*R^2.
Так как плоскость пересекает шар через конец радиуса, то получаем прямоугольный треугольник ABC. BC - радиус сферы(собсна, через конец которого и проходит секущая плоскость), но и KC - тоже радиус сферы(который перпендикулярен радиусу ВС), а отрезок AC - это часть радиуса КС, которую отсекла секущая плоскость, CH – высота, опущенная на гипотенузу АВ. Теперь все сводится к тому, чтобы найти радиус BH круга(сечения). По условию нам дано, что радиус сферы равен 12, и угол, под которым плоскость сечет шар - 30°. Рассмотрим прямоугольный треугольник ВНС. ВС - гипотенуза треугольника ВНС, угол НВС равен 30°. Вспомним, что катет прямоугольного треугольника, лежащий напротив угла 30° равен половине гипотенузы, следует, что катет НС равен половине ВС => HC=6. По теореме Пифагора ищем ВН. ВН^2=BC^2-HC^2. BH^2=144-36. BH=√108.
Все, теперь ищем площадь сечения(круга). S=pi*R^2 S=pi*(√108)^2 S=108pi.
Ответ: 108pi
(К слову, пользовался программами Cinema 4D и Photoshop, чтобы показать сечение и треугольник) )0))
Автор:
jovanДобавить свой ответ
Предмет:
ГеометрияАвтор:
kolton7k06Ответов:
Смотреть
Предмет:
ИсторияАвтор:
raquellarsenОтветов:
Смотреть
Предмет:
АлгебраАвтор:
myleegallagherОтветов:
Смотреть
Предмет:
ФизикаАвтор:
kaleighbx6yОтветов:
Смотреть