• Угол между секущей плоскостью, проходящий через вершину конуса и плоскостью основания равен 45 градусов. Сечение конуса – прямоугольный треугольник. Найти площадь сечения, если расстояние от центра основания конуса до секущей плоскости равно 3.

Ответы 1

  • Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Поэтому данный нам угол между плоскостями - это  <SHO=45°, где ОН - часть радиуса основания, проведенного перпендикулярно к хорде АВ (линии пересечения двух плоскостей). <ASB=90° (дано).В прямоугольном треугольнике SOH (высота SO перпендикулярна основанию конуса) катеты ОН и ОS равны, так как <SHO=45°. Значит гипотенуза SH по Пифагору равна: SH=3√2. Заметим, что SH - высота прямоугольного равнобедренного треугольника АSВ (<ASB=90°), опущенная из прямого угла на гипотенузу АВ и по свойству медианы (а эта высота является и медианой) равна половине гипотенузы. То есть АН=3√2 и поскольку это половина основания треугольника ABS с высотой SH, площадь этого треугольника (площадь сечения) равна S=SH*AH=3√2*3√2=18.Ответ: S=18.
    answer img
    • Автор:

      madilyn
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years