• определите полную поверхность
    правильной четырехугольной
    призмы , если ее диагональ равна
    5 см, а диагональ боковой грани
    равна 4 см.

Ответы 1

  • Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора: a2 + a2 = 52 2a2 = 25 a = √12,5 Высота боковой грани (обозначим как h) тогда будет равна: h2 + 12,5 = 42 h2 + 12,5 = 16 h2 = 3,5 h = √3,5 Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания S = 2a2 + 4ah S = 25 + 4√12,5 * √3,5 S = 25 + 4√43,75 S = 25 + 4√(175/4) S = 25 + 4√(7*25/4) S = 25 + 10√7 ≈ 51,46 см2 . Ответ: 25 + 10√7 ≈ 51,46 см2 .

    • Автор:

      tyreef1xo
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years