АА₁ || ВВ₁ , АВ∦(не параллельно) А₁В₁ ⇒ А₁АВВ₁ - трапеция
АС = СВ, АА₁ || СС₁ || ВВ₁ ⇒ А₁С₁ = С₁В₁ - по теореме Фалеса
Точка С₁ - середина А₁В₁, значит, точки А₁ , С₁ и В₁ лежат на одной прямой
Или можно пойти от противного, допустим точка С₁ ∉ А₁В₁ , С₁ ∈ α, тогда если провести среднюю линию СМ трапеции А₁АВВ₁, А₁М = МВ₁, то АА₁ || СМ || ВВ₁ , но по условию АА₁ || СС₁ || ВВ₁ ⇒ СМ || СС₁, что невозможно, а значит, точка С₁ ∈ А₁В₁ , ч.т.д.
АС = СВ, А₁С₁ = С₁В₁ ⇒ СС₁ - средняя линия
СС₁ = (АА₁ + ВВ₁)/2 = (5 + 7)/2 = 6 см
Ответ: 6 см
Автор:
dorkdcsuДобавить свой ответ
Предмет:
Русский языкАвтор:
rhysbeasleyОтветов:
Смотреть
Предмет:
Русский языкАвтор:
jettazkysОтветов:
Смотреть
Предмет:
АлгебраАвтор:
makenahorneОтветов:
Смотреть
Предмет:
ХимияАвтор:
persyfrederickОтветов:
Смотреть