• Докажите, что у равных треугольников ABC и A1B1C1 медианы, проведённые из вершин A и A1 равны. Помогите пожалуйста!!!

Ответы 2

  • 1)

    ∠С = ∠C1, ∠А = ∠А1, ∠В = ∠В1

    ВО = ОС = В1О1 = О1С1, т.к. АО и А1О1 — медианы, и ВС = В1С1.

    В ΔАОС и ΔА1О1С1: АС = А1С1, ОС = О1С1, ∠С = ∠С1. Таким образом, ΔАОС = ΔА1О1С1 по 1-му признаку, откуда АО = А1О1. 2)

    Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.

    ∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.

    В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.

    Откуда AK = A1K1.

    Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.

    ∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.

    В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.

    Откуда AK = A1K1.

    • Автор:

      prince
    • 5 лет назад
    • 0
  • Решение

     Пусть M и M1 — середины сторон BC и B1C1. Из равенства треугольников ABC и A1B1C1 следует, что

     A1C1 = ACACB = A1C1B1, C1M1 = CM

     (как половины равных отрезков C1B1 и CB). Поэтому треугольники ACM и A1C1M1 равны по двум сторонам и углу между ними. Следовательно, AM = A1M1.

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years