• Найдите площадь боковой поверхности правильной треугольной усеченной пирамиды, в которой площади оснований равны 9 3 и 36 3, а двугранный угол при основании 60°

Ответы 1

  • Если площадь меньшего основания равна 9 корней из трех, то сторона правильного треугольника такой площади равна 6, и его периметр равен 6*3 = 18.

    Если площадь большего основания равна 36 корней из трех, то сторона правильного треугольника такой площади равна 12, и его периметр равен 12*3 = 36.

    Сумма периметров оснований пирамиды равна 18 + 36 = 54.

     

    Найдем апофему. Средняя линия треугольника равна половине его основания. Для меньшего основания она равна 6/2 = 3, для большего - 12/2 = 6. Осевым сечением, проходящим через две средние линии оснований, для этой пирамиды является трапеция, меноьшее основание равно 3, большее - 6, а острый угол при большем основании равен по условию 60 градусов. Боковая сторона этой трапеции - апофема для пирамиды.

     

    Решая данную трапецию, получаем: боковая сторона (искомая апофема) = 3.

     

    Площадь боковой поверхности: 1/2*3*54 = 81 (кв. ед.)

    • Автор:

      curly
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years