Срединные перпендикуляры треугольника пересекаются в одной точке - центре описанной около него окружности.Известно, что только в прямоугольном тр-ке центр описанной окружности лежит на одной из его сторон - гипотенузе, причём на её середине, так как он равноудалён от вершин треугольника.Рассмотрим подробно.Тр-ки АВР и АРС равнобедренные, т.к. РМ⊥АВ и РК⊥АС, ВМ=АМ и АК=КС, значит РМ и РК - высоты и медианы (признак равнобедренности тр-ка).РМ и РК - биссектрисы тр-ков АВР и АРС, углы ВРА и АРС - смежные, значит РМ⊥РК.Углы между соответственно перпендикулярными прямыми равны.РМ⊥АВ, РК⊥АС, РМ⊥РК, значит АВ⊥АС ⇒ ∠А=90°.Доказано.