• вычислите площадь фигуры, которая ограничена графиком функции y=x^2-x-6 и осью абсцисс. Очень надо помогите 20 баллов даю.

Ответы 1

  • В общем прикинуть вначале надо как выглядит график. Способов много. Но подробный анализ в нашу задачу не входит. Можно сразу сказать парабола с ветвями направленными вверх. (Смещенная вниз на 6 единиц ) По-быстрому я в таблице набросал. Смотрите вложение Так и есть.Смотрите 2ю картинку. Площадь заштрихованной фигуры и надо найти.Такое чудо считается при помощи интеграла. Т.е. площадь фигуры ограниченной графиком функции y(x) осью абцисс и в общем случае прямыми x=a и x=b (криволинейной трапеции) равна:S= \int\limits^a_b {y(x)} \, dx   (1)Где пределы интегрирования a,b нам надо определить. В нашем случае это x-координаты точек пересечения графика с осью абцисс, т. е. корни уравнения:y(x)=0 x^2-x-6=0 Решаем его (квадратное уравнение)D=1+4*1*6=25x₁=-2;  x₂=3Далее, подставляем в формулу площади (1)  нашу функцию и пределы интегрирования Смотрите вложение. (не хочет он, гад, принимать формулы!)Так, площадь получилась отрицательной. Ну и правильно у нас фигура под осью x лежит. Такая штука может получиться и при вычислении мощности переменного тока на части периода. Там знак важен. А поскольку нам надо площадь, можно записать модуль результатаS= 20\frac{5}{6}
    answer img
    • Автор:

      nala32
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years