В 9м трапеция ADCB равнобокая. Отмечено черточками равенство кусочков (половинок сторон). MN её средняя линия.Можно так из точки C на AB опустить высоту CH. Рассмотреть треуголники ADE и BHC поскольку трапеция равнобокая AD=CB∠A=∠B и ⇒ ∠ADE=∠BCH. (Хотя и высоты DE и CH тоже равны).В общем выбираем признак равенства треугольников, какой нравится. Можно например по одной стороне и 2м углам.ΔADE=ΔBHC ⇒ AE=BH=2EH=EB-BH=5-2=3EDCH -- прямоугольник DC=EH (противоположные стороны)Средняя линия MN=(DC+AB)/2=(3+7)/2=5В 10-м ∠MNL=135-90=45°∠NLK=∠MNL=45° как внутренние накрест лежащие при параллельных прямых MN, LK и секущей NL.Значит в ΔLNK ∠K=180-(90+45)=45°. Т.е. он получился прямоугольный (поусловию) равнобедренный (углы при основании LK равны). NL=NK.Вот не отмечено тут, и всё же, если угол ипри M не прямой, то однозначного решения нет, а если прямой, то ∠MLK=90, ∠MLN=90-45=45°. ΔLMN прямоугольный равнобедренный. MN=ML=4. LN находим по теореме Пифагора
Аналогично в ΔLNK находим гипотенузу LK (оно же одно из оснований трапеции).
Тогда средняя линия RQ=(LK+MN)/2=(8+4)/2=6