• Прямая AB касается окружности с центром O и радиусом 5 см в точке A. Найдите OB, если AB=12см

Ответы 1

  • ОА перпендикулярно АВ, т.к. АВ - касательная к окружности, О - центр окружности, а отрезок из центра окружности к точки касания окружности с касательной перпендикулярен касательной. Значит треугольник АОВ - прямоугольный. АВ=12, ОА=5 (т.к. ОА - радиус окружности), т.к. точка А принадлежит окружности, О - центр окружности. Значит ОВ^2=АО^2+AB^2 по теореме Пифагора. То есть ОВ^2=5^2+12^2=25+144=169. Значит ОВ^2=169. ОВ=корню из 169, равно 13.

    Ответ: ОВ=13.

    • Автор:

      diesel
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years