• Ребро куба ABCDA1B1C1D1 равно a. Постройте сечение куба , проходящее через середины ребер А1В1, СС1, АД и найдите площадь этого сечения.

Ответы 1

  • На рисунке 6 показано сечение куба плоскостью в форме шестиугольника ABCDEF. Прямые AB и DE, BC и EF, CD и AF параллельны, как линии пересечения двух параллельных плоскостей третьей плоскостью.

    Таким образом, в сечении куба плоскостью может получиться только тот шестиугольник, у которого имеется три пары параллельных сторон.

    Так как исходные точки - это середины ребер, то в сечении получается правильный шестиугольник. Обозначим его сторону за "b". b = V((a/2)^2 + (a/2)^2) = (a/2) * V2 = a / V2.

    S = 3/2*V3*b^2 = 3/2*V3*(a / V2)^2 = 3V3*a^2 / 4.

    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years